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Abstract. A Lorentz lattice gas with a fractionxB of the scatterers being pure backscatterers,
the remaining being stochastic (right and left) rotators, is considered. The problem at hand is
the evaluation of the probabilityx that the moving particle returns to its original site, in the limit
where the densityρ of sites occupied by scatterers is small and the lattice becomes a Cayley
tree. In the special case of deterministic collision rules (Gunn–Ortuño model on a Cayley tree),
an exact cubic equation for the Laplace transform of the distribution function of first-return
times is derived and its asymptotic form near the threshold valuexc

B = 2
3 (beyond whichx = 1)

is obtained. In the general case of stochastic models, a mean-field approximation is proposed
for x and the mean return timeτ . The approximation reduces to the exact result in the case of
the deterministic model, as well as in the stochastic model without backscatterers. Comparison
with Monte Carlo simulations shows a reasonable agreement in the dependence ofx andτ on
xB. The relevance of the results to the development of approximate analytic expressions for the
diffusion coefficient is discussed.

1. Introduction

A lot of attention has recently been given to Lorentz lattice gas cellular automata as models
to study diffusion phenomena [1]. In these models, a particle moves ballistically in ad-
dimensional regular lattice with a coordination numberb. A fraction ρ of the sites are
occupied by a random quenched array of scatterers. At integer timest = 0, 1, 2, . . . the
particle is located at one of the sitesr of the lattice. If the particle is moving along the
directionj (j = 1, 2, . . . , b) and hits a scatterer, it has a probabilityWij of being deflected
along the directioni. To fix ideas, let us consider the rotator model on a square lattice
(d = 2, b = 4) [2]. In it, a fractionxR of the scatterers are stochastic right rotators, a
fraction xL are stochastic left rotators, and a fractionxB = 1− xR − xL are deterministic
backscatterers. When the particle collides with a right (left) rotator, it is deflected to the
right (left), transmitted, deflected to the left (right), or reflected with probabilitiesα1, α2, α3,
andβ = 1−α1−α2−α3, respectively. If the collision takes place with a pure backscatterer,
the particle is reflected with a probability 1. The deterministic case (α1 = 1) was introduced
by Gunn and Ortũno [3] and has been analysed by kinetic theory methods and by computer
simulations [4–6]. Its main physical motivation is to model the motion of a charged particle
in a random magnetic field (e.g. in a turbulent magnetized plasma).

In general, the motion in a Lorentz lattice gas exhibits a diffusive behaviour: the mean-
square displacement for long times is of the form〈r2〉 = 2dDt , which defines the diffusion
coefficientD; in addition to it, an important quantity is the probabilityx that the particle
returns to its initial site for the first time. On the other hand, in the (deterministic) Gunn–
Ortuño model with no backscatterers (xB = 0), simulation results by Cohen and Wang [5]
show an absence of diffusion due to trapping for all concentrations, except if eitherxR/xL or
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xL/xR is equal to a critical value that depends onρ; even in the latter case (whereD 6= 0),
the number of open trajectories decreases with time (ast−1/7), so thatx = 1. In this paper,
we will be concerned with a special class of Lorentz lattice gases: those on Cayley trees.
On a Cayley tree (or Bethe lattice) the particle can return to a site visited before only with
velocity opposite to the initial one. On a regular lattice, however, the return can also take
place by following a polygonal path or loop. On the other hand, the relevant properties
(e.g.D andx) of a d-dimensional regular lattice withstochasticcollision rules are identical
to those of a Cayley tree in the limitd → ∞ as well as in the limitρ → 0 [7, 8]. Such
an equivalence does not necessarily hold in the case of deterministic dynamics; once the
particle returns to the origin along a closed loop, it will repeat that loop forever.

While a general, direct relationship betweenx andD is not known, such a relationship
has been found by van Beijeren and Ernst [7] for Cayley trees with asingle typeof scatterers
and by van Beijeren [9] for the Cayley-tree version of the Gunn–Ortuño model. In the case
of the rotator model on a Cayley tree withxR = 1 or xL = 1, the exact result is [7]

D = 1

2ρ

(
Re

1

1− ω1
− x

1+ x −
ρ

2

1− x
1+ x

)
(1)

wherex < 1 is obtained from the cubic equation

1= 2 Re
x + ω1

1+ xω1
+ x − ω2

1− xω2
. (2)

In equations (1) and (2),ω1 = α2−β+(α1−α3)i andω2 = α2+β−α1−α3 are eigenvalues
of the matrixWij . When several types of scatterers are present, the situation is much more
complicated, even on a Cayley tree. In the case of thedeterministicrotator model (Gunn–
Ortuño model) on a Cayley tree (with coordination numberb = 4), however, arguments of
percolation theory [10] can be extended to yield a cubic equation for the probability of first
return [3]:

x = xB + (1− xB)x
3. (3)

The meaning of this equation is simple. If the first scatterer found by the particle is a
backscatterer (what occurs with probabilityxB) it returns for sure; if the first scatterer is a
rotator (either right or left), the particle must return to that scatterer three successive times
along three adjacent directions before it returns to its initial site. The interesting thing is
the existence of a threshold valuexc

B = 2
3, such thatx = 1 if xB > xc

B. Thus, if no more
than one out of every three scatterers is a rotator, the particle has a probability 1 of lying
on afinite cluster (absence of percolation). The exact expression forD as a function ofρ
andxB is [9]:

D = (1− x)2
2ρ

(
1

1− x(1− xB)
− ρ

2

)
. (4)

Consequently, ifxB approachesxc
B from below,D goes to zero as(xc

B − xB)
2. Strictly

speaking, the quantityD in equation (4) represents a ‘conductivity’ coefficient, since the
collection of particles moving on the lattice falls apart into two subclasses: a fraction
x2 of trapped particles (which do not diffuse) plus a fraction 1− x2 of mobile particles.
The mean-square displacement of the latter defines a ‘true’ diffusion coefficient equal to
D/(1− x2).

The aim of this paper is to analyse some aspects of the Cayley-tree version of the
rotator model. First, we consider thedeterministiccase in section 2 and obtain an exact
recursion relation for the probabilityP(t) that the particle first returns to its initial site
after a timet . By taking into account thatx = ∑t P (t), equation (3) is recovered. Also,
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the mean return timeτ = x−1∑
t tP (t) is obtained exactly. As the backscatterer fraction

xB approaches the threshold valuexc
B = 2

3, τ diverges as|xB − xc
B|−1. In general,P(t)

verifies a scaling law near the threshold point. A mean-field approximation is worked out in
section 3 to obtain estimates ofx andτ in the case of thestochasticmodel (α1 < 1). The
mean-field character of the approximation is based on the assumption that the probability
xn that the particle returnsn successive times to any initial site is justxn = xn. Although
this assumption is not generally correct, the mean-field approximation reduces to the exact
results, equations (2) and (3), in the corresponding limits. In section 4 we compare the
mean-field theory predictions with Monte Carlo simulation results for a model without pure
backscatterers (xB = 0) and two models including backscatterers (xB > 0). In the first
case the agreement is found to be excellent, while it is mainly qualitative in the second
class of models. The paper ends with a discussion on the relevance of these results to
the development of analytic approximate calculations of the diffusion coefficient in Lorentz
lattice gases with a mixture of scatterers.

2. Statistics of first-return times in the deterministic model

Let us consider the Gunn–Ortuño model [3] on a Cayley tree. The particle moves on a
square lattice where each site is occupied by a scatterer with a probabilityρ. There are
three types of scatterers: right rotators (R), left rotators (L), and backscatterers (B), with
relative probabilitiesxR, xL, andxB = 1− xR− xL, respectively. If the particle arrives at a
site occupied by a scatterer, it turns right, turns left, or goes backwards, depending on the
type of scatterer found. The motion takes place on a Cayley tree (or Bethe lattice) because
the particle recognizes a scatterer visited before only if it moves along a previously explored
path. Thus, recollisions along closed loops are ignored. Consequently, the probabilityx

that the particle first returns to its initial site on the Cayley tree represents the (partial)
probability of return by backtracking along previous paths on the regular lattice. As stated
in the introduction, this distinction might be relevant, even in the limitρ → 0.

The probabilityx obeys the cubic equation (3). Its physical solution is

x =


1
2

[√
1+ 4xB(1− xB)−1− 1

]
xB <

2
3

1 xB > 2
3.

(5)

(a) (b)

Figure 1. (a) A typical trajectory in the Gunn–Ortuño model with a return timet = 36; (b) a
general returning trajectory.



6998 L Acedo and A Santos

Our objective in this section is to obtain the distribution of first-return timesP(t).
Figure 1(a) shows a typical trajectory with a return timet = 36; in it, the particle visits 18
different sites before returning to the original site (O). In general,t = 2n, wheren is the
number of different sites visited. Thus, we can writeP(t = 2n) ≡ Pn. Up to n = 3, the
only scatterer found is a backscatterer:

Pn = xBρ(1− ρ)n−1 n = 1, 2, 3. (6)

For n > 4, the first scatterer found in the return trajectory is either a backscatterer or a
rotator. In the first case, the contribution toPn is given by equation (6). In the second case
(sketched in figure 1(b)), the particle must return from the three directions that are explored
consecutively. Consequently,

Pn = xBρ(1− ρ)n−1+ (1− xB)
∑

q+`+m+p=n
ρ(1− ρ)q−1P`PmPp n > 4 (7)

whereq, `,m, p > 1. This equation can be recast into the form

Pn = (1− ρ)Pn−1+ ρ(1− xB)

n−2∑
m=2

m−1∑
`=1

Pn−1−mPm−`P` n > 4 (8)

that can be solved recursively. If we introduce the generating function

G(z) =
∞∑
n=1

e−znPn (9)

equation (8) becomes

[ρ−1(ez − 1)+ 1]G(z) = xB + (1− xB)[G(z)]
3. (10)

Obviously, the total probability of first return is

x =
∞∑
n=1

Pn = G(0) (11)

so that equation (3) easily follows from equation (10). Let us define the (normalized)
moments

µn = 1

x

∞∑
k=1

knPk = 1

x

(
− d

dz

)n
G(z)

∣∣∣∣
z=0

. (12)

The recursion relation for the moments is then

µn = −ρ−1
n−1∑
m=0

(−1)n+m
(
n

m

)
µm + (1− xB)x

2
n∑

m=0

n−m∑
`=0

(
n

m

)(
n−m
`

)
µmµ`µn−m−`. (13)

In particular, the mean return time (of those particles that do return) is

τ ≡ 2µ1 = 2ρ−1

1− 3x2(1− xB)
(14)

and the variance is

σ 2 ≡ 4(µ2− µ2
1) = 4ρ−2 1− ρ + 3x2(1− xB)[1+ 2ρ − 3ρx2(1− xB)]

[1− 3x2(1− xB)]3
. (15)

Proceeding in a similar way, one can obtain any moment as a function ofρ andxB. The
probability Pn can be obtained from equation (8) or, equivalently, by solving the cubic
equation (10) and using the relation

Pn = 1

n!

(
−ez

d

dz

)n
G(z)

∣∣∣∣
z→∞

. (16)
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As xB approaches the threshold valuexB = 2
3, τ diverges as|xB − 2

3|−1. In general,
µn ∼ |xB − 2

3|−(2n−1), n > 1. These results can be reinterpreted from the point of view of
percolation theory [10]. Thus,x is the probability that the origin (or any other arbitrary
selected site) belongs to afinite cluster, 1+ 4µ1 is the average number of sites of the finite
clusters, andx−1Pn is the probability that a finite cluster has 1+ 4n sites. Only ifxB <

2
3

is there percolation (the particle may not return). Near the percolation threshold the sizes
of the finite clusters become very large.

In the limit ρ → 0, time becomes a continuous variable, andP(t) becomes a probability
density. We define

t∗ = ρt 1t∗ = 2ρ f (t∗) = 1

1t∗
P(t). (17)

Thus, in the limitρ → 0, equation (8) yields the integro-differential equation

f ′(t∗) = − 1
2f (t

∗)+ 1
2(1− xB)

∫ t∗

0
dt∗1

∫ t∗1

0
dt∗2 f (t

∗ − t∗1 )f (t∗1 − t∗2 )f (t∗2 ) (18)

with the initial conditionf (0) = 1
2xB. The Laplace transform

F(s) =
∫ ∞

0
dt∗ e−st

∗
f (t∗) (19)

obeys the cubic equation

(2s + 1)F (s) = xB + (1− xB)[F(s)]
3. (20)

This equation can also be obtained from equation (10) by making the changess = z/2ρ,
F(s) = G(z), and taking the limitρ → 0.

Although F(s) can be explicitly obtained, it does not allow us to obtain an explicit
expression forf (t∗). On the other hand, a useful approximation for long times and near the
threshold can be easily obtained. In the limitxB → 2

3, τ ∗ ≡ ρτ diverges asτ ∗ ≈ 2
3|xB− 2

3|−1.
Thus, atxB = 2

3, f (t∗) = fc(t
∗) must exhibit an algebraic tail andF(s) = Fc(s) must be

singular ats = 0. In fact, s = 0 is a branch point andFc(s) = 1− (2s)1/2 + O(s). For
small s, this is consistent with

Fc(s) ≈ e−
√

2s . (21)

Its inverse Laplace transform [11] is the Smirnov density [12]

fc(t
∗) ≈ 1√

2π
t∗−3/2e−1/2t∗ . (22)

Of course, there exists an infinite number of approximations consistent with the correct
asymptotic behaviourfc(t

∗) ∼ t∗−3/2. The main reason to choose equations (21) and (22) is
that they offer an excellent compromise between simplicity and accuracy. For instance, one
could have takenFc(s) ≈ (1+

√
2s)−1, which yieldsfc(t

∗) ≈ (2πt∗)−1/2− 1
2et

∗/2erfc
√
t∗/2.

Comparison with the exactfc(t
∗) obtained numerically shows that the latter approximation

has a relative error at least four times larger than that of equation (22) fort∗ > 10.
Let us consider now the casexB 6= 2

3. In the limit s → 0 the solution to equation (20)
is

F(s) = x[1− τ ∗s + 1
2τ
∗3s2+O(s3)]. (23)

A consistent approximation that reduces to equation (21) is

F(s) ≈ xea(
√
s0−√s+s0) (24)
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Figure 2. Distribution of first-return times in the Gunn–Ortuño model forxB = 0.4, 0.5, 0.6, 0.8.
The lines correspond to the asymptotic expression (26) and the symbols correspond to the exact
values obtained at the densityρ = 0.1.

where

s0 = [2τ ∗(τ ∗ − 1)]−1 a = 2τ ∗
√
s0. (25)

The function (24) has a branch point (s = −s0) different from the actual ones = −s ′0 =
− 1

2[1 − ( 3
2xB)

2
3 (3− 3xB)

1/3]. However, s0 ≈ s ′0 ≈ 9
8(xB − 2

3)
2 near the threshold. The

inverse Laplace transform of (24) [11] gives the long-time behaviour off (t∗):

f ∗(t∗) ≈ x a

2
√
π

ea
√
s0t∗−3/2e−s0t

∗−a2/4t∗ . (26)

In figure 2 we have compared the asymptotic distribution (26) forxB = 0.4, 0.5, 0.6 and
0.8 with theexact one obtained from equation (8) at thefinite densityρ = 0.1. The good
agreement observed in figure 2 shows the reliability of equation (26), even outside the
regime of long times and small values of|xB − 2

3| andρ.

3. Probability of first return in stochastic models

In this section we consider the stochastic version of the original Gunn–Ortuño model. The
backscatterers still reverse the direction of motion of the particle. On the other hand, if
the particle hits a right rotator, it is deflected to the right with probabilityα1, transmitted
with probability α2, deflected to the left with probabilityα3, or reflected with probability
β = 1− α1 − α2 − α3; collision with a left rotator proceeds in an equivalent way. If we
particularize toα1 = 1 we recover the deterministic model of the preceding section. The
calculation of the probability of first return is now much more complicated since many more
trajectories need to be enumerated.

Our aim here is to obtain anapproximateclosed equation forx. The basic approximation
consists of assuming thatxn = xn, wherexn denotes the probability that the particle returns
n successive times to the origin. From that point of view, the method can be interpreted as
a mean-fieldapproximation. Thatxn 6= xn can be easily seen in the deterministic model. In
that case, if the origin is not occupied by a scatterer, thenxn = x2, n > 2; if it is occupied
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by a backscatterer, thenxn = x, n > 1; finally, if the origin is occupied by a rotator, then
xn = x4, n > 4. Consequently, the average probability ofn returns is

xn = ρxBx + ρ(1− xB)x
an + (1− ρ)xbn (27)

wherean = n if n 6 4 andan = 4 otherwise, andb1 = 1, bn = 2 if n > 2.
In the stochastic model, equation (3) can be replaced by

x = xB + (1− xB)y (28)

wherey is the net probability that the particle returns to the origin, provided that thefirst
scatterer found was not a backscatterer. Our mean-field approximation consists of writing

y(x) = β + γ1x + γ2x
2+ γ3x

3+ · · · . (29)

The termγnxn is the probability that the particle is deflected by the scatterer, returns to it
n times, and then moves to the origin. Obviously,γ0 = β. The probabilitiesγ1 andγ2 are

γ1 = α1α3+ α2α2+ α3α1 (30)

γ2 = α1(βα3+ α1α2+ α2α1)+ α2(βα2+ α1α1+ α3α3)+ α3(βα1+ α3α2+ α2α3). (31)

In general, we can write

γn = α1γ
(1)
n + α2γ

(2)
n + α3γ

(3)
n . (32)

For instance,γ (2)n is the probability that the particle, having been transmitted by the scatterer
first and having returnedn times to it, moves finally to the origin. Thus, the following
recursion relations hold

γ
(1)
n+1 = βγ (1)n + α1γ

(2)
n + α2γ

(3)
n (33)

γ
(2)
n+1 = βγ (2)n + α1γ

(3)
n + α3γ

(1)
n (34)

γ
(3)
n+1 = βγ (3)n + α3γ

(2)
n + α2γ

(1)
n (35)

with the initial conditionsγ (1)1 = α3, γ (2)1 = α2, γ (3)1 = α1. It is worth remarking that,
in the special case ofα1 = 1 (Gunn–Ortũno model), one hasγn = δn,3 and equation (29)
gives the exact resulty = x3, even thoughxn 6= xn. In matrix form, equations (33)–(35)
are equivalent to

γn+1 = M · γn = Mn · γ1 (36)

where

γn =
(
γ (1)n

γ (2)n

γ (3)n

)
M =

(
β α1 α2

α3 β α1

α2 α3 β

)
. (37)

The eigenvalues ofM areλi = β − βi (i = 0,±), where

β0 = −2

3
h1/2 cosh

[
1

3
cosh−1

(
c

h3/2

)]
(38)

β± = −1

2
β0± i

(
3

4
β2

0 −
h

3

)1/2

(39)

with c ≡ 27
2 α2(α

2
1 + α2

3), h ≡ 3(α2
2 + 2α1α3). Thus,

M = U · D · U−1 (40)
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whereD is the diagonal matrix with elementsλ0, λ+, andλ−, and

U =
(
α3α2− α1β0 α3α2− α1β+ α3α2− α1β−
β2

0 − α2
2 β2

+ − α2
2 β2

− − α2
2

α1α2− α3β0 α1α2− α3β+ α1α2− α3β−

)
. (41)

Substitution into equation (36) yields

γn = A0λ
n−1
0 + A+λn−1

+ + A−λn−1
− (42)

where

Ai = (2α2
2 + βi+1βi−1)[(α2

1 + α2
3)βi + α2(α

2
2 − β2

i − 2α1α3)]

α2(βi − βi+1)(βi−1− βi) (43)

with the conventionβi±3 = βi . Finally, insertion of equation (42) into equation (29) gives

y(x) = β + x
(

A0

1− λ0x
+ A+

1− λ+x +
A−

1− λ−x
)
. (44)

Equations (28) and (44) give an (approximate) quartic equation for the probabilityx of first
return in terms of the fraction of backscatterersxB and the scattering probabilitiesβ, α1,
α2, andα3. It is easy to prove the identities

A0

1− λ0
+ A+

1− λ+ +
A−

1− λ− = 1− β (45)

A0

(1− λ0)
2 +

A+
(1− λ+)2

+ A−
(1− λ−)2

= 3. (46)

Equation (45) implies thatx = 1 is a mathematical solution to equation (28), while
equation (46) implies thatxc

B = 2
3 is the threshold fraction, beyond which the physical

solutions isx = 1. In the regionxB . 2
3, one hasy(x) ≈ 1− 3(1− x)+B(1− x)2, where

B = A0
λ0

(1− λ0)
3 + A+

λ+
(1− λ+)3

+ A− λ−
(1− λ−)3

. (47)

Equation (28) then gives

x ≈ 1− 9

B

(
2

3
− xB

)
. (48)

In the stochastic model with a single type of rotator (xR = 1 or xL = 1), equations (28)
and (44) yield

A0

1− λ0

1

1− λ0x
+ A+

1− λ+
1

1− λ+x +
A−

1− λ−
1

1− λ−x = 1 (49)

where use has been made of equation (45) to eliminate the unphysical rootx = 1. After
some algebra, it can be verified that equations (2) and (49) are equivalent cubic equations.
Since our mean-field approximation for the probability of first return becomes exact both
in the deterministic case for a mixture of scatterers (as stated above equation (36)) and in
the stochastic case for single scatterers, one can expect that it gives reasonable estimates in
the general case.

Following the same reasoning as in equations (28) and (29), one can obtain an estimate
of the reduced mean return timeτ ∗. In the spirit of our mean-field approximation, if the
particle leaves the origin, hits a scatterer, returns to itn times and then goes back to the
origin, it has spent an average time equal to 2+ nτ ∗. Consequently,

xτ ∗ = 2xB + (1− xB)[2β + γ1x(2+ τ ∗)+ γ2x
2(2+ 2τ ∗)+ γ3x

3(2+ 3τ ∗)+ · · ·]
= 2x + (1− xB)xτ

∗y ′(x) (50)
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wherey ′(x) = dy/dx and in the last step we have made use of equation ((29). Thus,

τ ∗−1 = 1
2[1− (1− xB)y

′(x)]. (51)

In the deterministic case,y ′(x) = 3x2 and we recover equation (14). In the stochastic
model, one gets the universal behaviourτ ∗ ≈ 2

3|xB − 2
3|−1 in the regionx ≈ 2

3, which is
exact in the deterministic case.

As an example of a pure stochastic model withxB 6= 0, let us takeα1 = α2 = α3 =
(1− β)/3. Then,β0 = −2α1, β± = α1, A0 = 3α2

1, A± = 0 and one has

x =

 1− 3
1− β
2+ β

(
2

3
− xB

)
xB <

2
3

1 xB > 2
3

(52)

τ ∗−1 =


2− 3xB

6(1− xB)
xB <

2
3

3
2(xB − 2

3) xB > 2
3.

(53)

Before closing this section, it is worthwhile remarking that the theoretical prediction
xc

B = 2
3 must be correct, even for stochastic models. From a static viewpoint, a non-

percolating cluster consists of a collection of bonds with nodal points at the locations of the
rotators, bounded in all directions by pure backscatterers. The precise nature of the rotators
is unimportant, as long as they allow a returning particle to explore all directions from the
nodal point. Thus, a trivial exception is the (one-dimensional) model withα1 = α3 = 0, in
which casex = 1 for all xB, i.e. xc

B = 0.

4. Monte Carlo simulations

In order to test the mean-field theory results obtained in the previous section, we have
performed Monte Carlo simulations for some of the models. In an arbitrary realization of
the system (withρ → 0) we have followed the motion ofN particles over a finite period of
time t∗0 . The fraction of particles returning to the origin givesx, while the mean return time
of those particles givesτ ∗. Sincet∗0 is finite, we actually get lower bounds ofx and τ ∗;
those particles that might return after a timet∗ > t∗0 are not accounted for. This is especially
important near the threshold, where the distribution of return times is expected to have an
algebraic tail (see equation (22) for the deterministic model) and the mean return time is
expected to diverge. In the simulations, we have typically takenN = 106 and t∗0 = 103,
save for the percolation region.

We consider first a stochastic rotator model withα1 = 1− 2β, α2 = β, α3 = 0 in the
absence of backscatterers (xB = 0). In figures 3 and 4 the simulation results are compared
with the mean-field theory predictions, equations (28), (44), and (51). The agreement is
found to be excellent. It is important to notice that the analytical predictions are independent
of the relative fraction of right and left rotators and coincide with that of single scatterer
models, equation (49). Reasons explaining this agreement between Monte Carlo simulations
and the mean-field theory approximation will be discussed in the last section.

The most physically interesting models are those including backscatterers. We have
considered the isotropic model (α1 = α2 = α3 = β = 1

4) and the model with
α1 = α2 = α3 = 1

3, β = 0. The mean-field predictions are given by equations (52)
and (53). Figures 5 and 6 showx and τ ∗, respectively, as functions ofxB. In the region
0.50 < xB < 0.72, we have takenN = 107 and t∗0 = 1.5× 103. We observe in figure 5
that, although the dependence ofx on xB is not strictly linear in the simulation results, the
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β

Figure 3. First-return probability for the rotator model withα1 = 1− 2β, α2 = β, α3 = 0 in
the absence of backscatterers. The Monte Carlo data are denoted by circles. The full curve is
the mean-field theory prediction.

τ

β

Figure 4. The same as figure 3, but for the inverse mean return time.

mean-field theory gives reasonable estimates, the deviations being smaller than 5%. Also,
the threshold value beyond which all particles return (and the diffusion coefficient vanishes
[13]) is consistent with the theoretical predictionxc

B = 2
3. On the other hand, the way

x → 1 asxB → xc
B is smoother than that predicted by the theory, thus indicating a critical

exponent larger than 1. The discrepancies between simulation results and mean-field theory
predictions are more important in the case of the mean return timeτ ∗, as shown in figure 6.
The agreement is good nearxB = 0 or xB = 1, but worsens at intermediate concentrations
of backscatterers. At a qualitative level, it is remarkable that the results withβ = 1

4 and
β = 0 are practically indistinguishable, in agreement with the theory. Apparently, the mean
return time in the simulations does not diverge for any value ofxB. The maximum value of
τ ∗ in the case of isotropic scatterers, for instance, isτ ∗max' 18. This is obviously an artifact
due to the unavoidable use of finite values ofN and t∗0 in the simulations. To explore this
effect, we have also consideredN = 108 andt∗0 = 104 for the isotropic model and the results
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Figure 5. First-return probability as a function of the fractionxB of backscatterers for the
stochastic model withα1 = α2 = α3 = (1− β)/3 in the case of isotropic scatterers (β = 1

4 ,
circles) and scatterers without reflection (β = 0, triangles). The symbols refer to Monte Carlo
results and the full lines correspond to the mean-field theory predictions.

τ

Figure 6. The same as figure 5, but for the inverse mean return time. The squares are Monte
Carlo data for the isotropic model obtained withN = 108 and t∗0 = 104.

are represented by squares in figure 6. Now the maximum value isτ ∗max ' 36. From the
location ofτ ∗max one can get anapparentthreshold fractionxc

B ' 0.62. This is supported by
figure 7, which shows a log–log plot of the distribution of first-return times in the isotropic
model atxB = 0.62, as obtained from the Monte Carlo simulations withN = 108 and
t∗0 = 104. A linear fit suggests a (normalized) distributionfc(t

∗) ≈ 0.4336t∗−1.62e−0.47/t∗ .
This distribution is analogous to that of the deterministic case, equation (22), except that
now the Fisher exponent [10] is 2.62 instead of52. If one defines anapparentmean return

time τ ∗max(t
∗
0 ) =

∫ t∗0
0 dt∗ t∗fc(t

∗), one gets values consistent with the simulation results.
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Figure 7. Distribution of first-return times for a model of isotropic scatterers with a fraction
xB = 0.62 of backscatterers. The circles denote Monte Carlo data and the full line is a linear
fit.

5. Discussion

In this paper we have been dealing with the probability of first return on Lorentz lattice
gases (in the Cayley-tree limit) where the scatterers are stochastic rotators and deterministic
backscatterers. In the special case of deterministic rotators (Gunn–Ortuño model), an exact
analytic equation in the Laplace space has been derived for the distribution of return times.
As the fractionxB of backscatterers approaches the threshold valuexc

B = 2
3 from below, the

probability of first returnx goes to 1 and the mean return timeτ diverges; forxB > xc
B,

x = 1. The long-time behaviour near the threshold has been derived and compared favorably
with an exact evaluation at finite density.

In section 3 we have developed a mean-field theory forx and τ by assuming that
the successive probabilities of return to a given site along a given path are statistically
independent; this is equivalent to the assumption that the scatterers are newly placed on the
lattice, according to their relative fractions, every time the particle explores a path. Although
not correct in general, the above ansatz is valid for the single scatterer model (becausex is
then independent of the configuration of scatterers) and for the deterministic model (because
the paths are visited only once before returning to the origin). The mean-field theory
assumption is also correct for models with two types of scatterers with a symmetrical set
of deflecting probabilities (left and right rotators without backscatterers), since the return
probability to a given site is again independent of the configuration of scatterers. This is
confirmed by comparison with Monte Carlo simulations. If backscatterers are introduced in
the model (xB 6= 0), the symmetry is broken and the agreement with Monte Carlo simulation
data is only qualitative, but reasonable. The mean-field theory predicts the existence of a
thresholdxc

B = 2
3, even for stochastic models, so thatx → 1 andτ → ∞ as xB → xc

B.
This agrees with the Monte Carlo simulations.

This mean-field theory could be improved by including the effect of the next-nearest
neighbours of the first scatterer visited and then making an average over all configurations
of these scatterers. Preliminary results show a much better agreement with simulations
than that of the first-order mean-field theory discussed in this paper, especially outside the
percolation region. Possible renormalization of this theory by using the self-similarity of
the Cayley tree is also worth studying.
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To conclude, let us comment on the possible interest of the results reported in this paper
to the evaluation of the diffusion coefficientD in Lorentz lattice gases with a mixture of
stochasticscatterers. In the case of single scatterer models,D is related to the total return
probability x by means of equation (1) andx obeys the cubic equation (2), both of them
being exact [7]. In the case of mixtures, approximate expressions similar to equations (1)
and (2) have been obtained by computing the effect of repeated ring (RR) collisions
in a self-consistent way [2]. This approximation is in excellent agreement with Monte
Carlo simulations in the absence of backscatterers [14], but predicts a diffusive percolation
thresholdxc

B = 1
3 that is in contrast with simulation results, which indicate a much larger

threshold compatible withxc
B = 2

3 [13, 14]. A better approximation can be developed if
one retains the relationship betweenD andx provided by the RR approximation, but uses
the algebraic equation forx obtained in this paper or the improved one mentioned above.
Work along this line is currently in progress and will be published elsewhere.

Acknowledgments

We are grateful to Santos Bravo Yuste for his helpful comments and a critical reading of
the manuscript. Partial support from the DGICYT (Spain) through grant no PB94-1021
and from the Junta de Extremadura-Fondo Social Europeo through grant no EIA94-39 is
acknowledged. The research of LA has been supported by the Ministerio de Educación y
Ciencia (Spain).

References

[1] Ernst M H 1991 Liquids, Freezing and Glass Transitionsed J P Hansen, D Levesque and J Zinn-Justin
(Amsterdam: Elsevier) pp 43–143

[2] Ossendrijver A J H, Santos A and Ernst M H 1993 J. Stat. Phys.71 1015
[3] Gunn J M F andOrtuño M 1985J. Phys. A: Math. Gen.18 L1035
[4] Kong X P and Cohen E G D 1991Physica47D 9
[5] Cohen E G D and Wang F1995J. Stat. Phys.81 445
[6] van Velzen G A 1991J. Phys. A: Math. Gen.24 787
[7] van Beijeren H and Ernst M H 1993 J. Stat. Phys.70 793
[8] Ernst M H, van Velzen G A and Binder P M 1989Phys. Rev.A 39 4327
[9] van Beijeren H unpublished

[10] Stauffer D and Aharony A 1994Introduction to Percolation Theory(London: Taylor and Francis)
[11] Spiegel M R 1967 Laplace Transforms(New York: McGraw-Hill)
[12] Hughes H D 1995Random Walks and Random Environments. Volume 1: Random Walks(Oxford: Clarendon)
[13] Acedo L and Santos A unpublished
[14] Acedo L and Santos A 1994Phys. Rev.E 50 4577


