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Abstract. A Lorentz lattice gas with a fractiomg of the scatterers being pure backscatterers,
the remaining being stochastic (right and left) rotators, is considered. The problem at hand is
the evaluation of the probability that the moving particle returns to its original site, in the limit
where the density of sites occupied by scatterers is small and the lattice becomes a Cayley
tree. In the special case of deterministic collision rules (Gunn@rtnodel on a Cayley tree),

an exact cubic equation for the Laplace transform of the distribution function of first-return
times is derived and its asymptotic form near the threshold vefue % (beyond whichx = 1)

is obtained. In the general case of stochastic models, a mean-field approximation is proposed
for x and the mean return time The approximation reduces to the exact result in the case of
the deterministic model, as well as in the stochastic model without backscatterers. Comparison
with Monte Carlo simulations shows a reasonable agreement in the dependenemaf on

xg. The relevance of the results to the development of approximate analytic expressions for the
diffusion coefficient is discussed.

1. Introduction

A lot of attention has recently been given to Lorentz lattice gas cellular automata as models
to study diffusion phenomena [1]. In these models, a particle moves ballisticallyiin a
dimensional regular lattice with a coordination numider A fraction p of the sites are
occupied by a random quenched array of scatterers. At integer time§, 1,2, ... the
particle is located at one of the sitesof the lattice. If the particle is moving along the
directionj (j =1, 2,..., b) and hits a scatterer, it has a probabili#y; of being deflected
along the direction. To fix ideas, let us consider the rotator model on a square lattice
d=2,b=4)][2]. Init, a fractionxg of the scatterers are stochastic right rotators, a
fraction x_ are stochastic left rotators, and a fraction = 1 — xg — x; are deterministic
backscatterers. When the particle collides with a right (left) rotator, it is deflected to the
right (left), transmitted, deflected to the left (right), or reflected with probabilitiesy,, a3,

andg = 1—a3 —a—a3, respectively. If the collision takes place with a pure backscatterer,
the particle is reflected with a probability 1. The deterministic cage<(1) was introduced

by Gunn and Ortiio [3] and has been analysed by kinetic theory methods and by computer
simulations [4—6]. Its main physical motivation is to model the motion of a charged particle
in a random magnetic field (e.g. in a turbulent magnetized plasma).

In general, the motion in a Lorentz lattice gas exhibits a diffusive behaviour: the mean-
square displacement for long times is of the fafirf) = 24 D¢, which defines the diffusion
coefficient D; in addition to it, an important quantity is the probabilitythat the particle
returns to its initial site for the first time. On the other hand, in the (deterministic) Gunn—
Ortufio model with no backscatterersg(= 0), simulation results by Cohen and Wang [5]
show an absence of diffusion due to trapping for all concentrations, except if gither or
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xL/xr is equal to a critical value that depends @neven in the latter case (whef2 # 0),
the number of open trajectories decreases with time(&$), so thatx = 1. In this paper,
we will be concerned with a special class of Lorentz lattice gases: those on Cayley trees.
On a Cayley tree (or Bethe lattice) the particle can return to a site visited before only with
velocity opposite to the initial one. On a regular lattice, however, the return can also take
place by following a polygonal path or loop. On the other hand, the relevant properties
(e.g.D andx) of ad-dimensional regular lattice witstochasticcollision rules are identical
to those of a Cayley tree in the limit — oo as well as in the limito — 0 [7,8]. Such
an equivalence does not necessarily hold in the case of deterministic dynamics; once the
particle returns to the origin along a closed loop, it will repeat that loop forever.

While a general, direct relationship betweemnd D is not known, such a relationship
has been found by van Beijeren and Ernst [7] for Cayley trees wsthgle typeof scatterers
and by van Beijeren [9] for the Cayley-tree version of the Gunn-f@rtmodel. In the case
of the rotator model on a Cayley tree with = 1 or x. = 1, the exact result is [7]

1 1 X pl—x
D=_—[Re — e 1

2,0( l-w1 14x 21+x> @
wherex < 1 is obtained from the cubic equation

X+ wy X — w2

1=2Re

1 - 2

+xw; 1—2xwy

In equations (1) and (2)y; = a2 — B+ (@1 —a3)i andw, = aa+ B — a1 — a3 are eigenvalues

of the matrixW;;. When several types of scatterers are present, the situation is much more
complicated, even on a Cayley tree. In the case ofdéterministicrotator model (Gunn—
Ortufio model) on a Cayley tree (with coordination numbet 4), however, arguments of
percolation theory [10] can be extended to yield a cubic equation for the probability of first
return [3]:

x =xg + (1—xg)x°. 3)

The meaning of this equation is simple. If the first scatterer found by the particle is a
backscatterer (what occurs with probability) it returns for sure; if the first scatterer is a
rotator (either right or left), the particle must return to that scatterer three successive times
along three adjacent directions before it returns to its initial site. The interesting thing is
the existence of a threshold valug = 2, such thatc = 1 if xg > x§. Thus, if no more

than one out of every three scatterers is a rotator, the particle has a probability 1 of lying
on afinite cluster (absence of percolation). The exact expressiofas a function ofp
andxg is [9]:

_(1-x)7? 1 p
b= 2p <1—x(l—xB)_2). @)

Consequently, ifrg approaches§ from below, D goes to zero agx§ — xg)?. Strictly
speaking, the quantity) in equation (4) represents a ‘conductivity’ coefficient, since the
collection of particles moving on the lattice falls apart into two subclasses: a fraction
x2 of trapped particles (which do not diffuse) plus a fractior- X2 of mobile particles.

The mean-square displacement of the latter defines a ‘true’ diffusion coefficient equal to
D/(1— x?).

The aim of this paper is to analyse some aspects of the Cayley-tree version of the
rotator model. First, we consider thieterministiccase in section 2 and obtain an exact
recursion relation for the probability’(z) that the particle first returns to its initial site
after a timer. By taking into account that = )", P(¢), equation (3) is recovered. Also,
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the mean return time = x~1 >, tP(t) is obtained exactly. As the backscatterer fraction

xg approaches the threshold valug = % t diverges agxg — x§|71. In general,P(t)
verifies a scaling law near the threshold point. A mean-field approximation is worked out in
section 3 to obtain estimates ofand r in the case of thstochasticmodel ¢; < 1). The
mean-field character of the approximation is based on the assumption that the probability
x, that the particle returns successive times to any initial site is just = x". Although

this assumption is not generally correct, the mean-field approximation reduces to the exact
results, equations (2) and (3), in the corresponding limits. In section 4 we compare the
mean-field theory predictions with Monte Carlo simulation results for a model without pure
backscatterersxf = 0) and two models including backscatterexg & 0). In the first

case the agreement is found to be excellent, while it is mainly qualitative in the second
class of models. The paper ends with a discussion on the relevance of these results to
the development of analytic approximate calculations of the diffusion coefficient in Lorentz
lattice gases with a mixture of scatterers.

2. Statistics of first-return times in the deterministic model

Let us consider the Gunn—Ofta model [3] on a Cayley tree. The particle moves on a
square lattice where each site is occupied by a scatterer with a probabilifyhere are
three types of scatterers: right rotators (R), left rotators (L), and backscatterers (B), with
relative probabilitiescg, x, andxg = 1 — xg — x, respectively. If the particle arrives at a
site occupied by a scatterer, it turns right, turns left, or goes backwards, depending on the
type of scatterer found. The motion takes place on a Cayley tree (or Bethe lattice) because
the particle recognizes a scatterer visited before only if it moves along a previously explored
path. Thus, recollisions along closed loops are ignored. Consequently, the prohability
that the particle first returns to its initial site on the Cayley tree represents the (partial)
probability of return by backtracking along previous paths on the regular lattice. As stated
in the introduction, this distinction might be relevant, even in the limit> 0.

The probabilityx obeys the cubic equation (3). Its physical solution is

1 _ -1_ 2
R E [\/1+4x|3(1 P 1] xp < 2 -
1 XB 2 %
|
® |
P |
q m
—s—R—e——10——0B . B ---
0 g 0

(@ (b)

Figure 1. (a) A typical trajectory in the Gunn—Orfio model with a return time = 36; (b) a
general returning trajectory.
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Our objective in this section is to obtain the distribution of first-return tiniag).
Figure 1@) shows a typical trajectory with a return time= 36; in it, the particle visits 18
different sites before returning to the original sit@)( In general; = 2n, wheren is the
number of different sites visited. Thus, we can wrR¢ = 2n) = P,. Up ton = 3, the
only scatterer found is a backscatterer:

P, =xgp(l—p)"?t n=1223. (6)

Forn > 4, thefirst scatterer found in the return trajectory is either a backscatterer or a
rotator. In the first case, the contribution & is given by equation (6). In the second case
(sketched in figure 1), the particle must return from the three directions that are explored
consecutively. Consequently,

Py=xgp(1—p)" "+ A—xs) Y. pA—p?'PP,P,  n>4 @)
q+e+m+p=n
wheregq, £, m, p > 1. This equation can be recast into the form
n—2m—1
Pn:(1_p)Pnfl"i_p(l_xB)ZZPnflmemf(fPE nz=4 (8)
m=2 {=1
that can be solved recursively. If we introduce the generating function
[o.¢]
Gz)=)Y e™P, 9)
n=1
equation (8) becomes
[p7}€ — 1) +1]G(2) = x5 + (1 — xe)[G)]*. (10)

Obviously, the total probability of first return is
x=Y P, =G(0) (11)

n=1
so that equation (3) easily follows from equation (10). Let us define the (normalized)

moments
1 1 d\"
==Y K'Pi=="(-——) G(z
w x; A x( dz) ()

The recursion relation for the moments is then

- n—1 m n n n—m n n—m
HUn = —p 1”;(—1) * <m>um + (1 — xg)x? Z Z <m>< ¢ )umumn_m_z. (13)

(12)

z=0

m=0 ¢=0
In particular, the mean return time (of those particles that do return) is
201
=2 = (K5 14
T I a0~ ) (14)
and the variance is
,1—p+3x%(1 — xp)[1+2p — 3px%(1 — xp)
02 = Az — u2) = 4p™2 ol 2 (15)

[1—3x2(1 — xp)]®
Proceeding in a similar way, one can obtain any moment as a functipnaoid xg. The

probability P, can be obtained from equation (8) or, equivalently, by solving the cubic

equation (10) and using the relation
1 dy”

Pn = (_ez> G(Z)

= & (16)

Z—>00
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As xg approaches the threshold valug = 3, t diverges aslxg — 5|~%. In general,
o ~ |xg — §|‘<2"‘1), n > 1. These results can be reinterpreted from the point of view of
percolation theory [10]. Thusy is the probability that the origin (or any other arbitrary
selected site) belongs tofimite cluster, 1+ 4u, is the average number of sites of the finite
clusters, and 1P, is the probability that a finite cluster hastl4n sites. Only ifxg < %
is there percolation (the particle may not return). Near the percolation threshold the sizes
of the finite clusters become very large.

In the limit p — 0, time becomes a continuous variable, @d) becomes a probability

density. We define

t* = pt At* =2p [ = Alt* P(1). a7)
Thus, in the limitp — 0, equation (8) yields the integro-differential equation
[ = =3 @)+ 51— xp) fo g /O S r - P — 16 (18)
with the initial condition ' (0) = %xB. The Laplace transform

F(s) = /0 Tare ) (19)
obeys the cubic equation

(25 +DF(s) = xg + (L~ xp)[F)I*. (20)

This equation can also be obtained from equation (10) by making the changes2p,
F(s) = G(z), and taking the limito — 0.

Although F(s) can be explicitly obtained, it does not allow us to obtain an explicit
expression forf (¢*). On the other hand, a useful approximation for long times and near the
threshold can be easily obtained. In the limjt— 2, t* = pr diverges as* ~ 2|xg—3|7%.
Thus, atxg = % f(@*) = fo(t*) must exhibit an algebraic tail anfi(s) = F(s) must be
singular ats = 0. In fact,s = 0 is a branch point and.(s) = 1 — (25)¥/? + O(s). For
small s, this is consistent with

Fo(s) ~ e V2, (21)

Its inverse Laplace transform [11] is the Smirnov density [12]
1 .
(t*) ~ t*—3/2e—1/2t . 22
e J2r (22)

Of course, there exists an infinite number of approximations consistent with the correct
asymptotic behaviouy,(¢*) ~ t*~%2. The main reason to choose equations (21) and (22) is
that they offer an excellent compromise between simplicity and accuracy. For instance, one
could have taketF(s) ~ (1++/25)7%, which yields fo(t*) ~ (2r1*)~2— Je"/2erfc,/1*/2.
Comparison with the exacf.(#*) obtained numerically shows that the latter approximation
has a relative error at least four times larger than that of equation (22} ferl0.
Let us consider now the casg # % In the limit s — O the solution to equation (20)

is

F(s)=x[1—1*s+ %t*?’sz + O], (23)
A consistent approximation that reduces to equation (21) is

F(s) ~ xgWomvito) (24)
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Figure 2. Distribution of first-return times in the Gunn—Oftoimodel forxg = 0.4, 0.5, 0.6, 0.8.
The lines correspond to the asymptotic expression (26) and the symbols correspond to the exact
values obtained at the densjty= 0.1.

where
so=[2t*(* —= D]t a = 2t*/so. (25)
The function (24) has a branch point £ —so) different from the actual one = —s; =

- - (%x3)§(3 — 3xg)3]. However,so ~ sy ~ 2(xg — 5) near the threshold. The
inverse Laplace transform of (24) [11] gives the long-time behaviouf @f):

a % 2 [ Ak
* (1Y) A ea\/FO[*73/267SOt —a“ /4t ) 26
fre g (26)
In figure 2 we have compared the asymptotic distribution (26)xfpoe= 0.4, 0.5, 0.6 and

0.8 with theexact one obtained from equation (8) at tfieite densityp = 0.1. The good
agreement observed in figure 2 shows the reliability of equation (26), even outside the
regime of long times and small values |ag — §| and p.

3. Probability of first return in stochastic models

In this section we consider the stochastic version of the original GunnA@rhodel. The
backscatterers still reverse the direction of motion of the particle. On the other hand, if
the particle hits a right rotator, it is deflected to the right with probabidity transmitted
with probability «,, deflected to the left with probabilitys, or reflected with probability
B =1— a1 — ay — ag; collision with a left rotator proceeds in an equivalent way. If we
particularize toe; = 1 we recover the deterministic model of the preceding section. The
calculation of the probability of first return is now much more complicated since many more
trajectories need to be enumerated.

Our aim here is to obtain aapproximateclosed equation fot. The basic approximation
consists of assuming tha} = x", wherex, denotes the probability that the particle returns
n successive times to the origin. From that point of view, the method can be interpreted as
amean-fieldapproximation. That, # x" can be easily seen in the deterministic model. In
that case, if the origin is not occupied by a scatterer, thea x2, n > 2; if it is occupied
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by a backscatterer, thery = x, n > 1; finally, if the origin is occupied by a rotator, then
x. = x* n > 4. Consequently, the average probabilitynofeturns is

Xy = pxpx + p(1— xg)x” + (1 — p)x’ (27)
wherea, = n if n <4 anda, = 4 otherwise, and, =1,b, =2 if n > 2.
In the stochastic model, equation (3) can be replaced by
x =xg+ (1—xp)y (28)
wherey is the net probability that the particle returns to the origin, provided thafitste
scatterer found was not a backscatterer. Our mean-field approximation consists of writing
y(x) =B+ y1x + yax® + x>+ (29)
The termy,x" is the probability that the particle is deflected by the scatterer, returns to it
n times, and then moves to the origin. Obviously,= 8. The probabilities;, andy, are
Y1 = a103 + a0 + a3 (30)
Y2 = a1(Bas + ooz + aza1) + ax(Baz + cra + azas) + as(Boy + azaz + axaz).  (31)
In general, we can write

1
Vn = al)’n( )

For instancey,? is the probability that the particle, having been transmitted by the scatterer
first and having returned times to it, moves finally to the origin. Thus, the following
recursion relations hold

+ a2, ? + azy,?. (32)

1

v = By + a1y, ® + oy (33)
2

v2 = Br? +o1y,® + azy? (34)
3

v = Br® + azy,® + oy (35)

with the initial conditionsy,” = a3, 1,2 = @y, > = 1. It is worth remarking that,
in the special case af; = 1 (Gunn-Ortéio model), one hag, = 3,3 and equation (29)
gives the exact result = x3, even thoughx, # x". In matrix form, equations (33)—(35)
are equivalent to

Yn+1 = M- Tn = M" . Y1 (36)
where
A B o1
Yo = (Vn(z)) M= <a3 B al) : (37)
¥ a a3 B
The eigenvalues d¥1 arei; = 8 — B; (i =0, &), where
_ 2 12 1 1 c
Bo = _éh cosh[3 cosh iz (38)
1., .(3., h\"?
Bx = —éﬁo =+ <4,30 - 3> (39)

with ¢ = 277012(0(% + ot%), h= 3(0{% + 2a1a3). Thus,

M=U.D-U! (40)
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whereD is the diagonal matrix with elements, A, andx_, and

azap —a1fy  oazop — a1y azar —oagf_
U= pi—0o3 Bi — a3 B2 — a3 (41)
ajaz —azfo  arop —azfy ajar —azf_
Substitution into equation (36) yields
Yo =Aokg t+ AT 4 AT (42)
where
A = (203 + BisaBi—D(@? + a3)Bi + az(as — B? — 20103)] (43)

a2(Bi — Bi+1)(Bi-1— Bi)
with the conventiong;+3 = B;. Finally, insertion of equation (42) into equation (29) gives
Ao A, A_
= . 44
ye) ﬁ+x<l—kox+l—k+x+l—k_x> (44)
Equations (28) and (44) give an (approximate) quartic equation for the probabdityirst
return in terms of the fraction of backscatteregsand the scattering probabilitied, a1,
az, andas. It is easy to prove the identities
AO A+ A_
=1- 45
1—Ao+1—k++1—/\_ p (45)
A A A_
: 3 T - > T 2 =3
1-20" A—=-2p° A-20)
Equation (45) implies thakt = 1 is a mathematical solution to equation (28), while

(46)

equation (46) implies that§ = % is the threshold fraction, beyond which the physical
solutions isx = 1. In the regiorwg < % one hasy(x) ~ 1 —3(1—x) 4+ B(1—x)?, where
0 At p
=A + A + A_ . 47
"1 - T A a)? “n
Equation (28) then gives
9 /2

In the stochastic model with a single type of rotates & 1 orx, = 1), equations (28)

and (44) yield
Ag 1 Ay 1 A_ 1
+ +

1—-X01—Apx 1—A;1-2,x 1—X_1-—A_x
where use has been made of equation (45) to eliminate the unphysical redt. After
some algebra, it can be verified that equations (2) and (49) are equivalent cubic equations.
Since our mean-field approximation for the probability of first return becomes exact both
in the deterministic case for a mixture of scatterers (as stated above equation (36)) and in
the stochastic case for single scatterers, one can expect that it gives reasonable estimates in
the general case.

Following the same reasoning as in equations (28) and (29), one can obtain an estimate
of the reduced mean return timé&. In the spirit of our mean-field approximation, if the
particle leaves the origin, hits a scatterer, returns to times and then goes back to the
origin, it has spent an average time equal t¢ 2t*. Consequently,

xt* = 2xg + (1 — x8)[28 + y1x (2 + T) + y2x?(2 + 20%) + yax3(2+ 3¢%) + -+ ]
=2x + (1 —xg)xt™y'(x) (50)

=1 (49)
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wherey’(x) = dy/dx and in the last step we have made use of equation ((29). Thus,
=3[l - L - xe)y (0] (51)

In the deterministic casey’ (x) = 3x2 and we recover equation (14). In the stochastic
model, one gets the universal behaviatir~ 3|xg — 2|1 in the regionx ~ 3, which is
exact in the deterministic case.

As an example of a pure stochastic model with= 0, let us takex; = oy = a3 =
(1—B)/3. Then,Bo = —2a1, B+ = a1, Ag = 3aZ, Ay = 0 and one has

1- 2
P 1—32_‘_'§<3—x3> xB<% 52)
1 xB)%
2—3)(3 2
S T SRR (53)
g(xs—%) XBZ%-

Before closing this section, it is worthwhile remarking that the theoretical prediction
Xg = % must be correct, even for stochastic models. From a static viewpoint, a non-
percolating cluster consists of a collection of bonds with nodal points at the locations of the
rotators, bounded in all directions by pure backscatterers. The precise nature of the rotators
is unimportant, as long as they allow a returning particle to explore all directions from the
nodal point. Thus, a trivial exception is the (one-dimensional) model aita: o3 = 0, in

which casex =1 for all xg, i.e.xg = 0.

4. Monte Carlo simulations

In order to test the mean-field theory results obtained in the previous section, we have
performed Monte Carlo simulations for some of the models. In an arbitrary realization of
the system (withp — 0) we have followed the motion d¥ particles over a finite period of

time #5. The fraction of particles returning to the origin giveswhile the mean return time

of those particles gives*. Sincet; is finite, we actually get lower bounds afand t*;

those particles that might return after a timie> ¢; are not accounted for. This is especially
important near the threshold, where the distribution of return times is expected to have an
algebraic tail (see equation (22) for the deterministic model) and the mean return time is
expected to diverge. In the simulations, we have typically takes 10° andz; = 10°,

save for the percolation region.

We consider first a stochastic rotator model with= 1 — 28, ax = 8, az = 0 in the
absence of backscattereng (= 0). In figures 3 and 4 the simulation results are compared
with the mean-field theory predictions, equations (28), (44), and (51). The agreement is
found to be excellent. It is important to notice that the analytical predictions are independent
of the relative fraction of right and left rotators and coincide with that of single scatterer
models, equation (49). Reasons explaining this agreement between Monte Carlo simulations
and the mean-field theory approximation will be discussed in the last section.

The most physically interesting models are those including backscatterers. We have
considered the isotropic modebiy( = a; = a3 = B = %) and the model with
o1 = ap = a3 = % B = 0. The mean-field predictions are given by equations (52)
and (53). Figures 5 and 6 shawand t*, respectively, as functions afz. In the region
0.50 < xg < 0.72, we have takev = 10’ andz; = 1.5 x 10°. We observe in figure 5
that, although the dependencexobn xg is not strictly linear in the simulation results, the
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Figure 3. First-return probability for the rotator model wity = 1 — 28, ap = 8, a3 =0 in
the absence of backscatterers. The Monte Carlo data are denoted by circles. The full curve is
the mean-field theory prediction.
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Figure 4. The same as figure 3, but for the inverse mean return time.

mean-field theory gives reasonable estimates, the deviations being smaller than 5%. Also,
the threshold value beyond which all particles return (and the diffusion coefficient vanishes
[13]) is consistent with the theoretical predictiaf = % On the other hand, the way

x — 1 asxg — x§ is smoother than that predicted by the theory, thus indicating a critical
exponent larger than 1. The discrepancies between simulation results and mean-field theory
predictions are more important in the case of the mean returntimas shown in figure 6.

The agreement is good nesg = 0 or xg = 1, but worsens at intermediate concentrations

of backscatterers. At a qualitative level, it is remarkable that the resultsﬂNi@-th;l1 and

B = 0 are practically indistinguishable, in agreement with the theory. Apparently, the mean
return time in the simulations does not diverge for any valuggofThe maximum value of

7* in the case of isotropic scatterers, for instance,ig >~ 18. This is obviously an artifact

due to the unavoidable use of finite valuesNfandz§ in the simulations. To explore this
effect, we have also considerad= 10® andz; = 10* for the isotropic model and the results
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Figure 5. First-return probability as a function of the fractiog of backscatterers for the
stochastic model withv; = a2 = a3 = (1 — B)/3 in the case of isotropic scattereid £ ;11,
circles) and scatterers without reflectioh € 0, triangles). The symbols refer to Monte Carlo
results and the full lines correspond to the mean-field theory predictions.
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Figure 6. The same as figure 5, but for the inverse mean return time. The squares are Monte
Carlo data for the isotropic model obtained with= 10% andz} = 10%.

are represented by squares in figure 6. Now the maximum valgg,js~ 36. From the
location ofz %, one can get aapparentthreshold fractioncg ~ 0.62. This is supported by
figure 7, which shows a log—log plot of the distribution of first-return times in the isotropic
model atxg = 0.62, as obtained from the Monte Carlo simulations with= 10° and

tr = 10 A linear fit suggests a (normalized) distributigh(r*) ~ 0.4336* 152g-047/1",

This distribution is analogous to that of the deterministic case, equation (22), except that
now the Fisher exponent [10] is& instead oig. If one defines ampparentmean return

time 7,,(13) = fotg de* t* fo(t*), one gets values consistent with the simulation results.
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Figure 7. Distribution of first-return times for a model of isotropic scatterers with a fraction
xg = 0.62 of backscatterers. The circles denote Monte Carlo data and the full line is a linear
fit.

5. Discussion

In this paper we have been dealing with the probability of first return on Lorentz lattice
gases (in the Cayley-tree limit) where the scatterers are stochastic rotators and deterministic
backscatterers. In the special case of deterministic rotators (GuniieQrtadel), an exact
analytic equation in the Laplace space has been derived for the distribution of return times.
As the fractionvg of backscatterers approaches the threshold vejue % from below, the
probability of first returnx goes to 1 and the mean return timediverges; forxg > xg,

x = 1. The long-time behaviour near the threshold has been derived and compared favorably
with an exact evaluation at finite density.

In section 3 we have developed a mean-field theoryxfaand r by assuming that
the successive probabilities of return to a given site along a given path are statistically
independent; this is equivalent to the assumption that the scatterers are newly placed on the
lattice, according to their relative fractions, every time the particle explores a path. Although
not correct in general, the above ansatz is valid for the single scatterer model (bedause
then independent of the configuration of scatterers) and for the deterministic model (because
the paths are visited only once before returning to the origin). The mean-field theory
assumption is also correct for models with two types of scatterers with a symmetrical set
of deflecting probabilities (left and right rotators without backscatterers), since the return
probability to a given site is again independent of the configuration of scatterers. This is
confirmed by comparison with Monte Carlo simulations. If backscatterers are introduced in
the model ¢g # 0), the symmetry is broken and the agreement with Monte Carlo simulation
data is only qualitative, but reasonable. The mean-field theory predicts the existence of a
thresholdxg§ = % even for stochastic models, so that> 1 andz — oo asxg — xg.

This agrees with the Monte Carlo simulations.

This mean-field theory could be improved by including the effect of the next-nearest
neighbours of the first scatterer visited and then making an average over all configurations
of these scatterers. Preliminary results show a much better agreement with simulations
than that of the first-order mean-field theory discussed in this paper, especially outside the
percolation region. Possible renormalization of this theory by using the self-similarity of
the Cayley tree is also worth studying.
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To conclude, let us comment on the possible interest of the results reported in this paper
to the evaluation of the diffusion coefficiel? in Lorentz lattice gases with a mixture of
stochasticscatterers. In the case of single scatterer models related to the total return
probability x by means of equation (1) andobeys the cubic equation (2), both of them
being exact [7]. In the case of mixtures, approximate expressions similar to equations (1)
and (2) have been obtained by computing the effect of repeated ring (RR) collisions
in a self-consistent way [2]. This approximation is in excellent agreement with Monte
Carlo simulations in the absence of backscatterers [14], but predicts a diffusive percolation
thresholdx§ = % that is in contrast with simulation results, which indicate a much larger
threshold compatible with§ = % [13,14]. A better approximation can be developed if
one retains the relationship betwefnandx provided by the RR approximation, but uses
the algebraic equation for obtained in this paper or the improved one mentioned above.

Work along this line is currently in progress and will be published elsewhere.
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